The Dodecahedral Conjecture
نویسندگان
چکیده
A packing of congruent balls of unit radius in three-dimensional Euclidean space is determined by and is identified with the set Λ of centers of the balls. A packing Λ determines a region called the Voronoi cell around each ball. The Voronoi cell Ω(Λ, v) around a ball at v ∈ Λ consists of points of space that are closer to v than to any other w ∈ Λ. The Voronoi cell is a convex polyhedron containing v. Figure 1.1 shows the Voronoi cells of a finite packing.
منابع مشابه
An Approach to the Dodecahedral Conjecture Based on Bounds for Spherical Codes
The dodecahedral conjecture states that in a packing of unit spheres in R3, the Voronoi cell of minimum possible volume is a regular dodecahedron with inradius one. The conjecture was first stated by L. Fejes Tóth in 1943, and was finally proved by Hales and McLaughlin over 50 years later using techniques developed by Hales for his proof of the Kepler conjecture. In 1964, Fejes Tóth described a...
متن کاملKnot complements, hidden symmetries and reflection orbifolds
In this article we examine the conjecture of Neumann and Reid that the only hyperbolic knots in the 3-sphere which admit hidden symmetries are the figure-eight knot and the two dodecahedral knots. Knots whose complements cover hyperbolic reflection orbifolds admit hidden symmetries, and we verify the Neumann-Reid conjecture for knots which cover small hyperbolic reflection orbifolds. We also sh...
متن کاملOn the 1-density of Unit Ball Covering
Motivated by modern applications like image processing and wireless sensor networks, we consider a variation of the Kepler Conjecture. Given any infinite set of unit balls covering the whole space, we want to know the optimal (lim sup) density of the volume which is covered by exactly one ball (i.e., the maximum such density over all unit ball covers, called the optimal 1-density and denoted as...
متن کاملSphere packings revisited
In this paper we survey most of the recent and often surprising results on packings of congruent spheres in d-dimensional spaces of constant curvature. The topics discussed are as follows: Hadwiger numbers of convex bodies and kissing numbers of spheres; Touching numbers of convex bodies; Newton numbers of convex bodies; One-sided Hadwiger and kissing numbers; Contact graphs of finite packings ...
متن کاملSphere packings in 3-space
In this paper we survey results on packings of congruent spheres in 3-dimensional spaces of constant curvature. The topics discussed are as follows: Hadwiger numbers of convex bodies and kissing numbers of spheres; Touching numbers of convex bodies; Newton numbers of convex bodies; One-sided Hadwiger and kissing numbers; Contact graphs of finite packings and the combinatorial Kepler problem; Is...
متن کامل